Core – shell upconversion nanoparticle – semiconductor heterostructures for photodynamic therapy

نویسندگان

  • Qing Qing Dou
  • Adith Rengaramchandran
  • Subramanian Tamil Selvan
  • Ramasamy Paulmurugan
  • Yong Zhang
چکیده

Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photodynamic Therapy and Simultaneous Fluorescence Imaging

In vivo biological application of upconversion nanoparticles (UCNPs) prefers excitation of 700-850 nm, instead of 980 nm, due to the absorption of water. Recently approach in constructing robust Nd doped UCNPs subject to 808 nm excitation relies on a thick Nd sensitized shell. However, for the very 10 important and popular Förster resonance energy transfer (FRET)-based applications, such as pho...

متن کامل

808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging.

The in vivo biological applications of upconversion nanoparticles (UCNPs) prefer excitation at 700-850 nm, instead of 980 nm, due to the absorption of water. Recent approaches in constructing robust Nd(3+) doped UCNPs with 808 nm excitation properties rely on a thick Nd(3+) sensitized shell. However, for the very important and popular Förster resonance energy transfer (FRET)-based applications,...

متن کامل

Smart pH-responsive upconversion nanoparticles for enhanced tumor cellular internalization and near-infrared light-triggered photodynamic therapy.

A smart pH-responsive photodynamic therapy system based on upconversion nanoparticle loaded PEG coated polymeric lipid vesicles (RB-UPPLVs) was designed and prepared. These RB-UPPLVs which are promising agents for deep cancer photodynamic therapy applications can achieve enhanced tumor cellular internalization and near-infrared light-triggered photodynamic therapy.

متن کامل

Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals

Multiphoton absorption processes enable many technologically important applications, such as in vivo imaging, photodynamic therapy and optical limiting, and so on. Specifically, higher-order nonlinear absorption such as five-photon absorption offers significant advantages of greater spatial confinement, increased penetration depth, reduced autofluorescence, enhanced sensitivity and improved res...

متن کامل

Size-Tunable and Monodisperse Tm3+/Gd3+-Doped Hexagonal NaYbF4 Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging

Hexagonal NaYbF4:Tm 3+ upconversion nanoparticles hold promise for use in high contrast near-infrared-tonear-infrared (NIR-to-NIR) in vitro and in vivo bioimaging. However, significant hurdles remain in their preparation and control of their morphology and size, as well as in enhancement of their upconversion efficiency. Here, we describe a systematic approach to produce highly controlled hexag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015